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PREFACE.

MY object in publishing these Notes on Finite Differences is

to give, in a convenient form, a collection of those elementary

propositions a knowledge of which is required of the students

who present themselves for the Institute of Actuaries First

Examination. I have not attempted a complete account of even

that small portion of the subject utilized in actuarial science,

thinking it desirable to confine myself almost entirely to the

methods of elementary algebra. The only instances in which a

knowledge of mathematics beyond the Binomial Theorem is

required of the reader are 2, Chap. IV; Example 28; and the

Note to Example 27. These are marked with asterisks, thus *.

The difference symbol has been denoted by 8 when the incre

ment of the independent variable is taken to be unity, and by A

when this increment is not so restricted.

I am indebted to Mr. T. B. SPRAGUE, President of the

Institute of Actuaries, for some valuable suggestions, and regret

that I have been able only in part to avail myself of them.

A. W. S.

2, King William Street,

London, E.C.

20 Feb. 1885.

M775738
A 2





PRELIMINARY.

1. As the following short account of some of the more

elementary theorems of Finite Differences is intended for the

use of students who have no acquaintance with the methods of

analytical geometry, it seems desirable to preface it by a short

explanation of the method of representing variable quantities by

curved lines or diagrams.

2. Let us consider the quantity #2
. Its value, of course,

depends on that of x
y
and if any particular value be given to x,

the corresponding value of x2

may be determined by multiplica

tion; e.g., if #=3, x2=9.

Any quantity such as x2 which depends on x in such a

manner that for each value assigned to x it takes a determinate

value is called a function of x.

As another illustration of a function, consider, out of 100,000

persons born alive, the number, 1X) who would be living at age x

on the assumption that these persons were subject to some

definite law of mortality. Here for each value of x
t
the age

attained, we have a definite number alive at that age. The

quantity lx is therefore, according to our definition, a function

of x.

Any function of x may be conveniently denoted by the

symbol ux . With reference to ux , the quantity x, (to which we

may assign any value we please, the corresponding value of ux

being then determined), is called the independent variable. With

reference to x, the quantity ux) (whose value we consider deter

mined when that of x is given), is called the dependent variable.

3. Suppose we wish to examine the series of values which

a function takes for a series of different values of the variable x

which it involves. A very valuable and powerful method of
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conducting such an examination, and of investigating the pro

perties of any function, is that of representing it by a diagram

as follows :

Let a straight line, which we will call O X, be drawn on a

sheet of paper from a definite point O, and let lines measured

along O X represent, according to some given scale, values of x.

For example, if we take one inch to represent the unit of x,

a?= 5 will be represented by measuring along O X a. line, ON,
5 inches long.

In order to represent the value of the function for any value

of x, draw through the end of the line which represents the value

of x a line perpendicular to OX, and of a length corresponding

on the same, or, it may be, a dif

ferent scale to the magnitude of

the function for this value of x.

For example, if the function is x2
,

and the scale in each case one to

(i)

the inch, for a?= 2, and therefore ON x

a?
2= 4, a line O N 2 inches long must be measured along OX

and through the end of it, N, a line N P drawn perpendicular to

X and 4 inches long.

In this way, when the algebraic expression for the function is

given, any number of lines such as NP may be drawn, each

representing the value of the function for that value of x which

is represented by the line between O and the foot of the per

pendicular. The summits of these perpendiculars will form a

series of points lying on a curved line, and the process above

described is that of mapping out the diagram or curved line

corresponding to the function.

4. To complete the representation of any function of x it

is necessary to provide for negative values. This is done by pro

ducing X through and making the convention that negative

values of x shall be represented by lines measured along the

produced line, which we will call O X
, and negative values of the

function by drawing the perpendiculars down instead of up.

It will be a useful exercise for the student to map out the

diagrams for two or three different functions.



Take, for example, the function 4 x*. The diagram will be

found to take

the form shown

by the dotted

curved line
f&quot;

given in Fig. /

(2). The curve

is that known
$&amp;gt;&quot;:
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the fact that every positive number has two square roots equal in

magnitude but opposite in sign.

6. It will be useful to regard the lines ON and PN,
which are called

respectively the

abscissa and or-

dinate of the

point P, from a

different point of

view. Starting
with a given
line of reference

XOX
,
the posi

tion of any point on the diagram is determined when its abscissa

and ordinate are given. The abscissa we have denoted by the

letter x, the ordinate is usually denoted by the letter y. Thus the

point whose abscissa is 3 and ordinate 10 in other words, for

which x= 3, y= lO is the point P, found by measuring along

OK a line N=3 and drawing through N a line NP per

pendicular to ON and equal to 10. This point might, however,

equally well have been found as follows : Take another line

of reference YOY drawn through at right angles to XOX ,

measure along Y a line M=10 and through M draw HP
perpendicular to Y
and equal to 3. We
see, in fact, that the

abscissa (denoted by x)

is the distance of the

point P from the line

YOY
, called the axis

of y and the ordinate

(denoted by y) is the

distance of the point P
from the line XOX ,

called the axis of x.

Looked at in this way there is no distinction in theory between

the abscissa and ordinate of a point. The two are called the

co-ordinates of the point.

X

(4)
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x.

As an example, consider the function which is the square of

For this function we have the equation

which may be called the equation to the curve which represents

the function under consideration, since it is the equation which

connects the co-ordinates of every point on this curve. Giving to

the independent variable x any values we please, and determining

from the equation the corresponding values of y, we may obtain

any number of points on the curve. We may, however, proceed

differently. The equation may be written

and we may now take y for the independent variable, assign to it

any values we please, and determine the corresponding values of

x. Of course we shall merely obtain the same curve over again.

It is easy to see from either form of the equation that the

curve lies entirely above the axis of x and is symmetrical about

the axis of y. For from the equation y= x? we see that y is

essentially positive, and that two values of x, which differ only in

sign, give the same value of y. Again, from o?= + *fy we see

that y, in order to have a real square root must be positive, and

that for every positive value of y there are two of x, differing only

in sign.

The curve is that given in Fig. (5). If the scale of measure

ment is the same for x and

yy
and the same scale is

employed in Fig. (3), the

curve in Fig. (5) is the

same as the curve in Fig.

(3) turned through a right

angle about the point 0.

In fact, the equations of x7

the two curves being y
z=x

and y= x2
, one is situated

with regard to the axes of

x and y in the same way
that the other is situated

with regard to the axes of y and a..
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CHAPTER I.

1. In arithmetic the numerical difference between two

quantities is the amount by which the greater exceeds the less.

Thus the difference between 5 and 7 is 2 and the greater number

may be obtained by adding the difference to the smaller. In

algebra the amount by which b differs from a is defined to be b a

and this quantity may of course be either positive or negative.

When we speak of the difference between any two quantities a

and b, we shall mean the quantity b a, or the quantity which

must be added to the former to get the latter.

2. Suppose we have a series of quantities proceeding accord

ing to some given law, e.g., the fourth powers of the natural

numbers. By subtraction we may find the difference between

any one and the next following ; e.g., the difference between 34

and 44
is 256 81 = 175, and 44

may be obtained by adding 175

to 34
. These quantities and their differences may be arranged in

a table thus:

x a-
4 A A- Aa A 4

1

2
3

4
5

6

7
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be found that the fourth differences are all equal, and therefore the

fifth and higher differences are zero.* It is obvious that the mth

differences of the nth differences of a series of quantities are the

m + nih differences of the series of quantities.

3. The attention of the student is drawn to the following

table or scheme of differences :

5A u_ 5h

3k u_3h
-

2A u~* f-
3*

Aw_ 2/i M_ 3/,

h u_h A 2w_ 2/i

Aw_ 7, A3w_ 2/i

w A 2
tt_/,

h Uh

In the first column are a series of equidistant values of #, in the

second the corresponding values of a function of x denoted by ux ,

in the third the first differences of the quantities in the second

column, which may be found by subtraction thus:

In the fourth column are given the differences of the quantities
of the third column, which are called the second differences of the

quantities in the second column, and so on.

4. If we are given the first of a series of values of a function

and all the first differences, we can, by addition, form the terms

of the series. Let for instance UQ) uh) u2h . . . denote the series

of values of the function, and suppose we have given

Adding Aw to MO , we get uh ; then adding Att/t to uh ,
we get u2h ,

and so on.

* We do not say that there are no fifth or higher differences, but that the
fifth and higher differences vanish or are all zero. This may appear a distinction
without a difference, but it will enable the student to better appreciate some of
the formula which occur later on.
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Or, if we have given u , Aw &amp;gt;

A2w . . . A M
?/

,
and all the n+ 1th

differences, we can form the series UQ , U}t , u^ . . . by addition.

For by adding in succession the n + 1th differences to A *MO we form

the table of nth differences, then adding these in succession to

A^ WO we form the n 1th differences, and so on.

Ex. : Given Uo=l, Aw =15, A 2w = 50, A% = 60, AX= 24

for all values of n, find UQ) Uh, ihii . . .

Here by repeated addition of 24 to 60 we get the column of third

differences 60, 84, 108 . . . ;
then adding these in succession to

50 we obtain the column of second differences 110, 194, 302 . . . ,

and so on, finally obtaining for uj,., u$t) u^ . . . the values 16, 81,

256 .... The figures are shown in the table p^-*. &amp;gt; . ^
.

With respect to the series of quantities u , w/ &2/ u^ . . .
,

u0) Aw , A 2M . . . are called the initial term and initial differences,

or the leading term and leading differences. The leading term

and leading differences for the quantities ?%/,, w,7+T./z , w^+2.?i . . .

are of course unk , Aww / A 2
/, ....

5. In sections (1) to (4) we have regarded the differences of

any function as found by subtraction from a series of equidistant
values of it supposed given. It will be useful to consider them

from a somewhat different point of view.

Let us take any function of x denoted by ux and find the

increment of the function corresponding to an increase h in the

variable x, in other words, find the difference between ux and

Uj,. + h. This is obviously ux+ll ux . The expression ux+ jt ux is

called the first difference of ux corresponding to the increment h of

the independent variable x and is denoted by Aw^. In the same

way AwA. being a function of x we may find its difference correspond

ing to the increment h of x. This is called the second difference of

the original function and is denoted by A2^. Similarly, the

third, fourth, &c. differences may be found, denoted by A3
w.o

A%,
Ex. : Take the function x4

; then
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Similarly A3^4= 24rf + 36/&amp;lt;

If h is taken = 1 , we have

4^4= 24.

from which, putting x 1, 2, 3 . . . we form the table of differences

given, p.qjA^(V) %

It is to be noted that in forming the successive differences of

any function, the increment of x, which might also be called the

difference of x, denoted above by h, is taken to be the same

throughout. In practice it usually has the value unity, but as

the investigation of the more elementary theorems of the subject

is not simplified by assuming h= l, we shall, unless it is otherwise

stated, suppose its value unrestricted.

6. The following illustrations of the subject are worthy of

attention. The demonstrations follow directly from the definition

of a difference, and they should be tried as exercises before reading
the proofs.

(1). If a is a constant quantity, that is a quantity independent
of X,

(2). If ux and vx are two functions of x,

(a) &(ux vx)=Aux Avx

(ft) &uxvx= uAAvx+ vxkux + AuxAvx

(7) A ~ = PgAMg

+*

(3).

(4). Aw
fl*=(fl* l)

nax

(5). A*a?*= jw#*.
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(1).

(2). (a) &(ux vx)=ux + ll

Ux (l&amp;gt;x+ h

(13)

=
(ux + AM*) (vx+ &vx)

uxv

Vx

(3).

(4).

A=A(*-
= (^-l)

=(^~!)(* !)

=
(

7

&amp;lt;-l)V

Similarly A3 -r=
(a

7i -
l)

2Aa*

= (a*-\Yax
and so on.

(5). This is a particular case of the following more general
theorem.

Let ux=Azn + Rxn~ l + Cffn
~ 2 +. . ., a rational integral alge

braic function of x of degree n. Then, if r&amp;lt; n, Ar#n is a rational
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integral algebraic function of % of degree nr in which the term

involving xn
~r is hn.n \.n % . . . n r + \xn

~ rhr ; if r= n,

&r
sK
n =&\nh,n ;

if
r&amp;gt;n,

AV= 0. The proof of this theorem is as

follows :

Differencing again we obtain in the same way,

similarly,

= A/i n 1 n

and so on. Thus if r&amp;lt;n we obtain on differencing r times

i-r-i _i_

Again, differencing n times we get

AwMa.= Aw . Ti^l . /^2 . . . 1 . hn
-,

and this quantity being independent of x, all higher differences

vanish.

7. To express &nux in terms of ux and its successive values

.T = Ma.+ 2/1 Ma,+ /t (
Wr+ /, Ux)

2ux + h 4- %.

U .

From the above examples it might be inferred that we should have

generally

where pi , p2 ,
. . . are the numerical values of the coefficients in the

expansion of (a x)
n

. Let us assume, then, that this law holds

for n, and examine whether it will hold for w-f 1. Differencing
we obtain
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.e.,

&quot; f }

Now, if we multiply both sides of the equation

(a x)
n= an pia

n- l

x+p.2fl
n~ 2z2

p3a
n

by a x, we obtain

Thus the coefficients in the series for &n+lux are the same as

those in the series for (a x)
n+l

. If, then, the law holds for n it

holds for n + 1. But we have seen that the law holds for Aw*,
therefore it holds for A2wx , and therefore for A3^, and so on

universally. That is, we have

n.n 1 n. n \.n 2 , 1N
W.r+ ,(_3/, + ... (IJ.

. ..
JL 4v J. &amp;lt;w O

8. To express ux+njt in terms of w^ and its first n leading

differences, i.e., in terms of ux) Awa,, A2
w.r . . . A&quot;MX .

=*+A
=%r+ +Al^+j|

= ux + kux + A (ux + A w.r)

Similarly ux+3jl = ux + 3Aw r+ 3A2w r + A3wa,
,

and in the same way as in the preceding proposition it may be

shown that

. . (2)

9. In 2 we have supposed a series of quantities proceeding

according to some given law. We may, however, take a series of

numbers at random and obtain from them their first, second . . .

differences by subtraction. These quantities and their differences

may still be symbolised as in the table of 3, the suffix nh of any
one of the quantities unu merely denoting its position in the series.

In sections 4, 5, 7 and 8, no assumption was made as to the nature

of the law of formation of the quantities considered, and they
therefore apply to a series of numbers chosen at random and their

differences. Of such a series of numbers it is perhaps preferable
to say, not that they are numbers chosen at random, but that the

law of their formation is that of arbitrary selection.
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CHAPTER II.

INTERPOLATION.

1. IT frequently arises, in the calculation of tables and in

physical and statistical researches, that certain values of a function

are found by experiment, observation, or calculation, and it is

required to obtain from them approximately other values of the

function. For example, we might be given as the result of

observation the number of persons attaining the ages 15, 20,

25 ... out of 100,000 alive at age 10, and require to find

approximately the numbers attaining the intermediate ages 11,

12, 13, 14, 16, 17

To denote this process of approximating to unknown values of

a function or terms of a series by means of other values which are

given we make use of the expression interpolation.

When we do not know the general form of a function ux i.e.,

either the algebraic expression for it or the curve which represents

it but are given merely a series of values of it corresponding to

a series of different values of x that is, are given merely a series

of isolated points on the curve which represents it the problem
of finding the values of the function for other values of x or of

determining other points on the curve is clearly indeterminate,

since between any two consecutive given points we may draw any
number of lines we please, and thus we may get an infinite

number of curves passing through the given series of points. It

is therefore necessary to make some assumption in order to have

a problem with a definite solution. This assumption is usually

made as follows :

2. In the case of most of the tabulated functions e.g.,

logarithms the successive orders of differences rapidly diminish,

and this will usually be found to be the case with the functions

with which the actuary and the statistician are concerned.

When m particular values of a function are given, and it is

required to find other values or a general expression for the

function, it is usual to assume that the function can be completely

represented by a rational integral algebraic expression in x of degree
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m 1. This, as we have seen (Ex. 5, p. 15), is equivalent to

assuming that the mth and all higher differences vanish. Pro

ceeding on this hypothesis we shall first consider and illustrate

two particular problems in interpolation, and afterwards (Chapter

IV.) give a few more general theorems on the subject.

3. I. Given m equidistant values u
, ufl , u^h wi^i/i of a

function, to find a general expression for it that is, to find its

value for any other value of the independent variable.

By the equation (2), p. /&quot;I
&amp;lt;f^we

have

71.711 71.711.712.
&quot;&quot;

or, using the symbol x to denote nh,

x . x.x h A

w..r=w + ^AMO+
2^2

A2M + ...... (3)

where it must be remembered that the only restriction on x is

that it must be a multiple of h. The last term of the series is

since under our hypothesis AWMO and all the higher differences

vanish.

Equation (3) gives us a general expression for ux when , is

any positive integer. But the form of the expression for ux is,

of course, independent of this restriction as to the value of x.

Having found the general expression for ux when x has any one

of the values 0, h, 2h, 3h . . . which are infinite in number, we
infer that this is the expression for ux when the value of x is

unrestricted. We therefore have whatever may be the value of x,

x.(x h) -

It will be observed that the above expression is of degree 77? 1 in

x, and giving to x in succession the values 0, h, 2h . . . m \h
} it

takes the values uQ) ujl} u-2n . . . u^^i^.

The student should bear in mind that this expression for ?/.r

is exact only when ux is known to be an expression of the m 1th

E 2
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degree in x. If, as will generally be the case, we know nothing

of the function except the m given values of it, we can only say

that the series represents it approximately, since Aww , Am+1
z&amp;lt; . . .

have all been neglected.

In numerical applications it will usually be convenient to

write the equation in the form

xfx
71 Z*W

We may regard x as the distance of ux from the first of the

; given values of the function, and h as the distance between any
two consecutive given values.

4. Ex. : The Northampton 3 per-cent annuities forages 21,

25, 29, 33, and 37, are respectively 18*4708, 17-8144, 17-1070,

16-3432, and 15-5154. Find the annuity for age 30.

Taking 15*5154 as the initial value of the function, we have

9?

h=
4&amp;gt;,

x 7, and
j =1-75. By subtraction we obtain the follow

ing table of differences :

.-.

&amp;lt;ui
r

ftvr*
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have had ^ = 9, = 18-4708, Aw = - -6564, A2w = 051,
A3w =--0054, and A4M = - 0022.

5. If we choose to denote the initial value of u by *, the

equation (3) becomes

x . x.x h

This is quite obvious when we bear in mind the remark made at

the end of 3 as to the meaning of x.

6. II. Suppose the given values of the function do not

form a complete series of equidistant values in consequence of the

absence of one or more terms. Let it be required to supply these

missing terms.

Let u
, ujl} u.2h . . . denote the complete series, of which m

terms are supposed given. If one term only is wanting, the

number of terms in the complete series is m + I, and, to find the

missing term we put Aww = 0, or, by equation (1)

In this equation all but one of the m + 1 quantities u0} u^ u^.
are known, and it is therefore a simple equation to find the one

required.

If two terms are deficient the number of terms in the complete
series being m + 2 we must also put A &quot;1^

= 0, and thus get, to

find the two unknown quantities, the two equations

and generally, if r terms are deficient, the total number of terms

being m + r, the r equations to find them are got by equating

separately to zero the series for Awzw , A^w/^, AwM2/t ., AHI
W^TI^.

Ex. : Given w , u^, u3 ,
ub ,

w6 , find HI and w 4 .

Putting A5w and A5
Wi= 0, we have

U-=Ub w4

M6 5w5 -flOw4

From which we obtain

10w3 -f-3w5
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7. The method given in the preceding section will, of course,

always succeed. In special cases, however, other processes of

calculation may be employed with advantage. For these no

general rule can be given. The following is an example (vide

Journal of the Institute of Actuaries, vol. xv, pp. 394, 395).

If u = 100,000, u7
= 97,189, us

= 96,720, u9
= 96,195, find u l9

1*2 ... U6 .

Here we assume that 4th differences vanish, and therefore 3rd

differences are constant. Reverse the series and let the terms in

reverse order be denoted by v
0&amp;gt;

vl} v2 . . . v9 . By subtraction we

form the following difference table :

v 96,195

&quot;

v, 96,720
v2 97,189

But by equation (2) or (3)

n.n 1 n.nl.n 2

whence, putting n= 9, we have

100,000= 96,195 + 9 x 525-36 x 56 + 84 x

which gives A3v =13 05.

Having now obtained the leading quantities v = 96,195, Av =
= 56, A3

fla;= 13*05, the table given below is formed by
addition.

A A 2 A 3

9 u
tJ=Vo 96,195

u,=v\ 96&amp;gt;20 SS-56-00
7/
_

7 , Q718Q 42- nri
1*7 f/9 i/ / 5 J. U t/ /iO/?r^Ct ^i*&amp;lt;w t/d

n ,^ lf- 4^D UO on nn^6 z=^3 y7,oio Qn n K &amp;lt;cy-yu

no m i
oyo lo T/5.0RU5

= v4 yo,Ull Qfrn.on 1O oO
no oni &amp;lt;*^ ^^ o on

^4= ^5 i7O,Oc/l owcr rrv O oU
no vat* o7O&quot;oU n oru3

= v6 98,766 84 .75
9-25

w2 =?;7 99,151 2n7n 22 30

M, = v8 99,558 tVoVn 35 35
^^ = ^;&amp;lt;

) 100,000
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CHAPTER III.

ILLUSTRATIONS OF THE SUBJECT.

1. To sum the series formed by n consecutive equidistant

values of a given function of x. Let ux denote the function,, and

ur ,
ur+h . . . ur+^ih the series of terms to be summed. Let vx

be such a function of x that kvx= ux . Then

So that the sum of the series can be found if the expression for v

can be found.

Ex. : Find the sum of

. . . (ar+ m l + b)

. . . (ar

+ . . . + a.~r +nl + b)(ar + n + b) . . . (a.r

Denoting the function (ax+ b) (ax -f- 1 -f b) . . . (ax+m 1 -f b)

in which the number of factors is m by u(

\ and taking the incre

ment of x unity we have

. am

Therefore, changing m into m + l and x into xl, we have

SwK^zi&quot; ;
that is, -yJLt^JJ^ u a function whose

difference is u{ \ The sum of the series is therefore
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2. To find the sum of a series of equidistant values of any
rational integral algebraic function of x.

Let the terms of the series to be summed be denoted by
u

,
ul} u2 ,

. . . un_i, and suppose the increment of x in passing

from any one to the next is h. Let Sw= tto+ Mi + M2+ . . . +un_i,

S being equal to zero. Then, A having reference to the incre

ment h in x or 1 in n,

AStt un \

Therefore AaS tt
= Attw

A3Sw= A2ww ,
&c.

Now, by equation (2), Chap. I,

A2S

n. n 1 . n.n \.n 2 .= nuQ+ - 2

JL**
[O

Substituting in this equation their values for u , AMO , A2M . . .,

we obtain Sw or the required sum.

Ex. : Find the sum of the series

By the formula just found the sum is equal to

.*-tt-l.tt-3 6Kff

As a particular case, putting K= h=l, we have

3. The differences of the various positive integral powers of

x, in which the increment of x is taken to be unity and x is put

equal to zero after evaluation, are called the Differences of

Nothing. The general symbol for them is SmOw . To obtain

8mOn,
xn is differenced m times, and in the result x is put =0.

These numbers are of importance in the study of Finite

Differences, and we shall see a use for them later on. We proceed

to investigate a formula by which they can be easily calculated.
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By equation (1), Chap. I, putting ux= xn
,
we have

= mSm - 1 l n
-

1

, (by equation (a)).

But since we have always ux+h= ua!+ &ux ,
therefore

therefore &&quot;

&amp;gt;Qn=m{Sm lQn ~

By means of this equation the Differences of Nothing may be

tabulated without difficulty, as in the following diagram:

O1 O3 O3 O4 O5 O6

Si



CHAPTER IV.

INTERPOLATION FORMULAE.

1. Given a series of equidistant values of a function, to

insert between each two consecutive values n 1 equidistant

terms so as to divide each interval into n equal intervals.

Denoting any pair of consecutive given values by ujc and Uk+ n)

the terms to be interpolated between them will be denoted by

Uk+i, ujc +2 . . . Uk+n-i* The solution of the problem is obtained

from equation (3). Taking the form of it given in 5 of Chapter
II we have

In this equation putting x in succession equal to 1^ 2 ... n\,
we obtain the values of the terms to be interpolated in the interval

between u^ and ujc+n .

To calculate each term separately by a direct application of

this formula would be a tedious operation. The process may be

shortened as follows.

Let B} &, S3 . . . denote first, second . . . differences when the

increment of x is unity. If Si&, S2
u/c . . . are found the terms to

be interpolated can be formed by addition.

To find Srujc we must take the rth difference of u that is

of the series ^t& -f - Aw& H--^r
- A 2/M&+ . . ., with respect to x3n LvTi

and in the result put ^-= 0. The only quantities which have to

be differenced are the various powers of x which occur, and the

calculations may therefore easily be effected by means of a table

of Differences of Nothing such as that given 3, Chapter III.

Writing the series for u^+x in the form

naaa-6w3
A-
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where A, A2
, . . . are abreviations for A?**, A2

?^ . . ., and making
our table

A l-n

use of our table of the Differences of Nothing we write at once

l6n+ Ilri*6ri l-10n+ 35/&amp;lt;

2-

|4w
4 ;5w5

2 6-6/i . . 14

30- 140/i + 210/&amp;lt;
2- 1 OO/i3 ..

+ A+ . . .

|5w-

6 36-36 4 150- 360/i + 210/r

Suppose for example that 7^= 10 and that six orders of differences

are retained. Then

8= 1 A - -045A 2 + -0285A3- -0206625A 4

+ -01611675A 5- -0131620125A 6

8-= -01 A-- -009A 3 + -007725A 4- -0066975A5

+ -005895225A6

&= -001A3- -00135A 4 + -0014625A 5- -0014805A6

4 = -0001A 4- -00018A5 + -0002355A6

8^= -00001A 5- -0000225A 6

ge= -000001A 6

(compare Journal of the Institute of Actuaries, vol. xiii, p. 160).

2. As an example of the problem discussed in the preceding

section, we might be required to find the logarithms to base 10

of all numbers from 1_,000 to 10,000, having given the logarithms
of the numbers 100 to 1,000, that is the logarithms of the numbers

1,000, 1,010, 1,020 . . . 10,000. The table of differences A, A2 ...

would be formed from the given logarithms by subtraction, the

differences 8, 82
, 83

. . . would then be found for each interval by
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means of the preceding equations, and these differences being
found the quantities to be interpolated would be found by addition.

The quantities A, A 2 ... change in passing from one interval to

the next, but the coefficients by which they are multiplied in the

expressions for 8, 82 ... of course remain unaltered throughout
the calculations.

It must not be inferred that this would be the most expeditious

way of making the interpolations in question. The illustration is

given merely to assist the student in understanding the nature of

the problem discussed in 1.

3. Lagrange s Interpolation Formula. Given m values of a

function which are not equidistant, to find any other value of the

function.

Let ua) U&, uc . . . ujf be the given values, corresponding to

the values a, b, c . . . k of x. It is required to find the general

expression for ux .

Assuming ux is a rational integral algebraic function of x of

degree m 1 , it may be put in the form

r*. n\(r r\ /&amp;lt;Y._M
\x a)\x c) . . .

( K)

+ . . . + K.(x-a)(x-b) . . .

where A, B, C . . . are quantities independent of x. For this

expression is of the m 1th degree in x, and since it contains m

independent constants A, B, C . . . K it may be made, by a proper
choice of these constants, to represent any function whatever of

the m 1th degree in x. We have to find what values must be

given to A, B, C . . . K that the expression may represent ux .

Putting x= a we see that we must have

ua=A.(a b)(a c) . . . (a k)

Un.

(a-b)(a-c) . . . (a k)

Similar values are obtained for B, C . . . Thus we get

(
x -b)(x-c). . .(x-k) (x-a)(x-b) . . . (x-k)

(a-b)(a-c) . . . (a-ky
Ub

(b-a)(b-c) . . . (b-k)

This is called Lagrange s Formula for Interpolation.
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4. The following transformation of Lagrange s formula is

of use in the theory of interpolation.

We have

x a (x-a) .(x-b) (x a)(xb)(xc)
f a-b &quot;*&quot;

(a-b) . (a-c)
&quot;*&quot;

(a-b)(a-c)(a-d)
&quot;*

_ x-b
+ O-a)0-6) + (s a)(g 6)(g c) +

b (a b}(a c) (a b)(a c)(a d)

#-6^
,

*-g
- pr g)pE c) |

^( a-c
&quot;&quot;

(
fl c)(fl &amp;lt;/)

J

and this expression may be shown in the same way to be equal to

.r-a-c .r- ar-j?-i

(a-b)(*-c)\ a-d^ (a-d)(a-e)
1

)

finally
(^-^)(.^c) . . . (x-k)

=&amp;gt;
fi dl3

(a-6)(-e) . . . (*-*)

By means of this equation Lagrange^s formula may be written

7I - f l 4. ^Z^ 4- (ff_^?)_(&amp;gt;^*) , (a?-fl)(*-A)_(-c)
fl

&quot;(

r a-b^ (a-b)(a-c)
&quot;*&quot;

( ft)(- tf)(a~rf)
&quot;

^ 1 + - 4-
,

-a\ fr 6-c T
(b-c)(b-d)

^

(x-a)(x-b}i x-c
!

c A^^ &quot;

(k- a)(k-b) ... (A-

where /: denotes the last of the quantities a, b, c . . . and h the

last but one.
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5. As a particular case let each of the quantities b, c, d . . .

exceed that which precedes it by n, i.e., let b a= c b= . . .

= k h= n. Then the expression

(a-b)(a-c) ... (b-a}(b-c)

in which the number of factors in each denominator is r

+ ,

u
.r-l Blr-2

Now, the increment of x being w,

- --

e

From which we see that the expression (a) becomes

The expression (a) involves the quantities a, b, c . . . sym

metrically, and we therefore see that if they can be arranged in

any order a, /3, &amp;lt;y

. . . such that /3 a= y /3 . . . n, then it

takes the value Arua
n

|r

Now take a= b n

d=2n

Then the expression for ux becomes

08)

Again take = b=n
c= n d=2n
e= 2n f=-3n
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Then the expression becomes

Adding these two expressions for ux we obtain Stirling s

Interpolation Formula, viz. :

6. Stirling s interpolation formula gives in another form a

solution of the problem considered in 1. If we assume that

the wth and higher differences vanish it may be shown that the

two give identically the same values for ux . These conditions

however will not be exactly satisfied in any actual case,, (except of

course where the function may be represented exactly by an

expression of the m 1th degree in x). The results obtained

from the formulae of sections 1 and 6 and from other interpolation

formulae will therefore generally differ to a greater or less extent,

and it becomes a question of importance what formula may be

most advantageously employed with a view to making the calcula

tions as short and the results as correct as possible.

In searching for an interpolation formula to subdivide any
interval it seems natural to look for one which would involve the

given values of the function on either side the interval symmetri

cally. For instance to interpolate in the interval between w and

un we should look for a formula which would involve UQ in the

same way as un , u_n in the same way as u^n , and so on. It is

obvious that Stirling s formula is not strictly appropriate for this

purpose. On referring to the difference table given p. 12, it will

be seen that we require an equation of the form

The quantities A, B, C, D, E . . . must be functions of x and

n such that the calculations might equally well be performed in

reverse order, with the series of given quantities . . . u_ 2n , u_n ,

u , un , u^n, u3n . . . reversed. Now if we reverse the order of the

given quantities the signs of the odd differences A, A3 ... will be

changed but the differences otherwise will remain unaltered. We
therefore see that when x is changed into n x, A, B, C, D, E . . .
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must remain numerically unaltered, but the signs of the even

coefficients B, D . . . must change.

A formula of this kind may be found without difficulty by
the method of 5. Referring to it and putting

a=n b=

c=2n d= n

e= 3n f= 2n .... we get

^ [

,/

Adding this to equation (ft) of 5, we obtain

With reference to the interval between UQ and un ,
the quantities

Aw
, iA2

(w + w._w), A3
?/_ n ,

. . . are called &quot; central differences/

In any interpolation formula in which ux is expanded in a series

of differences of ascending order, the term involving the difference

of any order is called the equation of that difference. For

instance, in the formula just given, the term
2 (uQ -\-u_n)

is called the equation of the second difference.

7. As an illustration of Sections (1) and (6), let us take from

the Institute of Actuaries Text-Book, Part I, Interest, p. 167,

the values of Iog10 (l + t) for 100z= 6T
4

, 6f, 7T
8

,
... 10, and

deduce from them the values of log 10(!+* ) for 1002= 7^, 7|f,

7-J-g-,
. . . Sy

1

-^ ; that is, fill up the interval between 7T
8
7r
and 8^-.

Retaining 13 figures in the logarithms, and omitting the

initial zeros, we obtain by subtraction the following difference

table :

Table A.

263289387223

,.

314084642516

339261204729

364292656267

^
25

- 145 110 675

- 143 447 501

A3

172204,

,

16681M

A4

-. 778

-092

A5
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Let us first consider the formula of 6. Retaining fourth

differences, it may be written

2&amp;lt;r n . a? nx .

+ -- AMO+ -
iMwo + tt_w)

from \vhich_, by the method of 1, we obtain

Aw 9 6 627-^ + &quot;~ o)^

whence Bu =2 524 234 200-559 187 5

8^0= -1466299-614375

&u = 1 702-568 25

a% = -2-9435

The above are the exact values of Su0) S2w ... as deduced

from the data. If, instead of these values, we use approximate
values di, d2 , d3 , d4 , obtained by omitting some of the last figures

of the decimal parts, and if En E2 , E3 , E4 are the errors thereby
introduced into S, S2

,
83

,
S4

,
so that dl

= S + ^ 1) d2
=

the value found for ux will be

x(x\) , #.(# l)(ff-2)(.r 3)} ;

so that the error thereby introduced into ux will be

*E. I

^
-^-^E. I

^- 1)(-

The coefficients of E E2 . . . are greatest when #=10 when

they have the values 10, 45, 120, 210. If, then, we retain two

decimal places in SMO ,
and three in each of the others, the greatest

error introduced will be less than 10 x 005 + (45 + 120+ 210)
x -0005= -2375.

Let us then take the decimal parts of S, 82
. . . to be -56, -614,

c
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568 and 943 respectively. These give us E 1
= 0008125,

E2
= 000375, E3

= 00025, E4
= 0005, so that the error intro

duced into 10 is 008125 + -016875- 03 + -105= -1, and the

maximum error introduced is less than 008125 + 016875 + 03

We now proceed to the interpolations. S3u is first written

down (see Table B), and then S3
Wi, S3w2 . . . formed from it by

repeated addition of S4u= 17*057. These are written on every

fifth line. The value of 82w is then written above B3u , the two

added together, and the sum i.e., &Ui written above S3
^, then

&Ui and S2^ are added, and the sum i.e., &
2u2 written above

&u2 , and so on. In this way the second differences are formed,

and then by a similar process the first differences, and finally the

quantities ul} u2 , . . . u 10 .

Table .

U 314 084 642 516

8 2 524 234 200-56

S2 18 533 700-386

83 1 702-568

MI 316 608 876 716-56

2 522 767 900-946

18 535 402-954

1 699-625

U2 319 131 644 617-506

2 521 303 303-900

18 537 102-579

1 696-682

U3 321 652 947 921-406

2 519 840 406-479

18 538 799-261

1 693-739

U4 324 172 788 327 885

2 518 379 205-740

18 540 493-000

1 690-796

U5 326 691 167 533-625

2 516 919 698-740

18 542 183-796

1 687-853

UG 329 208 087 232-365

2 515 461 882-536

18 543 871-649

1 684-910

U7 331 723 549 114-901

2 514 005 754-185

18 545 556-559

1 681-967

U8 334 237 554 869-086

2 512 551 310-744

18 547 238-526

1 679-024

U9 336 750 106 179*830

2511 098 549-270

18 548 917-550

1 676-081

Wio 339 261 204 729 100

If we go back to the formula (4) of 6, we notice that when

x=n the series takes the value un whatever values we assign to

&2
(u -\-u_n), A3w_ TC . . . ; and therefore from the fact that w 10

comes out correct, except for the predicted error 1, we may not

infer that the calculations are free from error, though we may
infer that the additions of Table B have probably been correctly

performed.
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8. The method in which the computations involved in any

interpolation may most advantageously be effected will depend on

the particular problem under consideration. Two points may be

noticed.

(1). The equations of the differences diminish as the order of

the differences increases.

(2). That when, as in 7, the calculations are effected by
continued addition of differences, there is an accumulation of

error, which frequently increases with the order of the difference.

For instance, in 7, an error in 8 lu is magnified 10 times in u10 ,

while an error in 8*u is magnified 210 times in uw . Owing to

this it is often necessary to retain in the higher differences several

figures more than are wanted in the final results.

For these, among other reasons, it is sometimes profitable, not

to proceed as in 7, but to introduce the equations of the higher
differences into the calculations by a different process.

Let us now make use of the formula of (1) to perform the

interpolations already effected in Table B, first obtaining approxi
mate values of the quantities to be interpolated by proceeding as

in 7, but retaining only second differences, and then correcting

the results so obtained by adding the equations of the higher
differences.

Retaining only second differences, the formulae of 1 give us

= 2524186201-675

= - 145 110 6-75

= 18548893-25

The Table C (given below) is formed as follows :

&/ = 2 524 186 201-675 is first written down at the top of

the table, then by repeated addition of 82 we form Siti ,
Su2 . . . ,

written on every seventh line. u is then written underneath Su ,

the two added, and the sum written underneath 8u lf and so on.

The results so obtained require to be corrected by the equations
of the third, fourth and fifth differences, which have been obtained

from their values

*C*-10)(*-20) X166317 .

3(10)

a(-10)(g-aO)(*-30)
4(10)*

sfr-lQ) (*-20) (*-80) (*-40)

5(10)=
c 2



by direct calculation. These are written in order underneath, and

each of the final results ul} u.2 . . . is then obtained by addition of

the four numbers above it. We notice that A5w cannot be

obtained exactly from our data, but on the assumption that sixth

differences are constant, its value is 634. It has been put = 640,

which is sufficiently exact for our purpose.

Table C.

2 524 186 201-675

U 314 084 642 516

2 522 735 094-925

316 608 828 717 675

47 400-46

587-48

10-3

W, 316 608 876 715-9

2 521 283 988-175

319 131 563 812-600

79 832-35

955-31

16-4

U2 319 131 644 616-7

2 519 832 881-425

321 652 847 800-775

98 958-85

1 141-90

19

U3 321 652 947 920 5

2 518 381 774-675

324 172 680 682-200

106 443-14

1 182-77

19-2

U4 324 172 788 327 3

2 516 930 667-925

326 691 062 456-875

103 948-38

1 110-62

17-5

U5 326 691 167 533-4

2515479561-175
329 207 993 124-800

93 137-74

955-32

14-6

U6 329 208 087 232-5

2 514 028 454-425

331 723 472 685-975

75 674-42

743-85

11

U
7 331 723 549 115 2

2 512 577 347-675

334 237 501 140-400

53 221-57

500-40

7-2

UQ 334 237 554 869*6

2511126240-925
336 750 078 488-075

27 442-37

246-29

3-4

U&amp;lt;j
336 750 106 180-1

2 509 675 134-175

W,n 339 261 204 729-000

9. When a single interval only has to be filled up, it will

generally, as in the example we have considered, be far easier to

calculate all the leading differences, and then form the table by
addition, as in 7. But if a large series of intervals have to be
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filled up, the processes may sometimes be shortened either by

computing the equations of the higher differences directly or

by the use of various artifices to introduce them into the calcula

tions, subsidiary tables being formed to shorten the work. (Vide

paper on Interpolation by Mr. Woolhouse, Journal of the Institute

of Actuaries, vol. xi, p. 61.)

The figures of Table C afford a useful illustration of the

gradual closing of the approximations as the successive differences

are taken account of, and it is for this reason that the table has

been given in the shape in which it stands.

10. On comparing the interpolated quantities found in

7 and 8 with the values of the quantities as given on p. 167

of the Institute Text Book, it will be seen that the results of each

interpolation are correct, or nearly so, to the last figure retained,

the greatest error being about 5 in this figure. If we calculate

for Table C the equations of the 6th differences, we shall find

the greatest of them is about 7. For the formula used in 7,

the greatest value of the equation of the 5th difference is about

6. We therefore see that the results obtained by the use of

formula (4), retaining only 4th differences, are at least as accurate

as those given by formula (3) retaining 5th differences. It is

easily seen that the series (4) generally converges more rapidly

than the series (3).

* 11. It is not to be supposed that all interpolation formulae

are founded on the assumption of 2, Chap. II. Mr. Sprague,

in a very interesting paper (Journal of the Institute of Actuaries,

vol. xxii, p. 270) has given formula for interpolation framed on a

different basis, which deserve attentive study. The hypothesis

on which he proceeds may be explained as follows :

Let the ordi-

nates Pp, Qq . . .

represent given

values yQ , y }
. . .

of a function be

tween which it is

desired to interpo

late other values.

&quot; The problem ov

&quot;interpolating
&quot; between y.2 and
&quot;

?/3 is the same
&quot; as that ov drawing a curvd line between the points R and S,
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&quot; and in order to got a satisfactory interpolation, it is necessary
&quot; that this partial curv shoud join on smoothly to the ajacent
&quot;

partial curvs, namely, Q R on the one side and S T on the
&quot; other side.&quot;

In the formulae for interpolation hitherto considered, this

smoothness of junction is obtained, with more or less success, by

drawing the partial curves so that any one, as R S, forms a

portion of a curve through R, S, and adjacent given points.

This partial curve approximates to a portion of the parabolic curve

of degree mI passing through all the given points, supposed m
in number, coinciding exactly with this curve when m I orders

of differences are retained.

Mr. Sprague secures this smoothness of junction by drawing
the partial curves so that any two adjacent ones, as Q R}

R S,

have, at their common point R}
contact of the second order with

the quartic parabola passing through R and the two adjacent given

points on each side, P Q and S T. Each partial curve has there

fore to satisfy three conditions at each extremity, six in all.

Let us find the equation to the curve R S, on the assumption
that the given ordinates are equidistant. Taking r as origin, it

will be of the form

y= y2+ ax-\- bx2 + ex3 + dx4
-f ex5 ..... I

Now let us form the table of differences for the quantities

2/o &amp;gt; y\i yz -
2/5- Denote the differences of y by A, A2

, A3
. * .

and those of y^ by AM A^, Aj3
. . .

Referred to p as origin, the equation of the quartic parabola

through P, Q, R } S, T, is

x(x 1) . x(x !)(# 2) A;2 v 3

|4

Transferring the origin to r, this becomes

-f



The equation I, referred to s as origin, is

&amp;lt;?}

+ . . . . Ill

and, by observing the form of Equation II, we see that, referred

to s as origin, the equation to the quartic parabola through

QRSTU is

Since I and II have contact of the second order at R, we

obtain, equating constant terms and the coefficients of x and x2,

(a)

(13)

Similarly, since III and IV have contact of the second order

at S,

.... (7)

The five equations (a), (/3), (7), (S), (/), which are the same as

those obtained by Mr. Sprague by a somewhat different process,

determine a, b, c, d, e, in terms of A, A2 ... A5
. Solving them,

and substituting in Equation I, we get the required interpolation

formula.
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EXERCISES AND EXAMPLES.

1. Show, by actual addition, the succeeding terms of a series

the first of which is u and the successive differences of whose

terms are Aw, A2
w, A3w ....

&quot;

Institute of Actuaries Exam.&quot;, vide Journal iii, p. 274

2. Point out the analogies which lead us to infer that for

the wth term we may write un= u + n^u-\ A2w+ . . . and
1 .

for the nth difference knu= un nun- l -\ \ ^ t_ 2=
1 . &

&quot;Institute of Actuaries Exam.&quot;, vide Journal iii, p. 274.

3. Find Sv when x is variable, the increment of x being

unity.
&quot;

Institute of Actuaries Exarn.&quot;, vide Journal xviii, p. 378.

4. If ux be any function of x of n dimensions, prove that

A ?X? is constant ;
and hence show how to form a table of cubes

of natural numbers expeditiously.

&quot;Institute of Actuaries Exam.&quot;, vide Journal xxii, p. 65.

5. Investigate the expressions :

(a) for ux+n in terms of A^.
(ft) for A 7%. in terms of ux and its successive values.

&quot;

Institute of Actuaries Exam.&quot;, vide Journal xxii, p. 65.

6. Investigate an expression for &nux in terms of ux and its

successive values.

Using the formula thus found, if in the series 1, 6, 21, 56, K,

252, 462, &c., the sixth differences vanish, find K and sum the

series to 10 terms.

&quot;

Institute of Actuaries Exam.&quot;, vide Journal xxi, p. 224.
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7. Given 1^=100,000, 81= -490, 83= 93, 83=-25, 84=2,
85
= 0, find the first eight terms of the series ux , ux+lj &c.

&quot;Institute of Actuaries Exam.&quot;, vide Journal xxii, p. 65.

^ 8. Find u i2 and also u^ when z*5=55, 6=126, ?^=259,
8= 484, 1^=837, and A4

is constant.

\ ^ &quot;Institute of Actuaries Exam.&quot;, 1881.

-.

9. Given the following values, construct logs 7*1, 7*2 . . . 7 9,

8, to seven places, and explain why the last differs from log 8 as

obtained from an ordinary table of logs.

log 7= -8450980

$!= 61603

S2
=- 861

83= 24

&quot;

Institute of Actuaries Exam.&quot;, vide Journal xxi, p. 224.

0. Given log 235= 2-3710679

log 236= 2-3729120

log 237= 2-3747483

log 238= 2-3765770

Find log 23563.

&quot;Institute of Actuaries Exam.&quot;, vide Journal xviii, p. 378.

11. Find log 512, given that

log 510= 2-70757018

log 511=2- 70842090

log 513=2-71011737

log 514=2-71096312
&quot;

Institute of Actuaries Exam.&quot;, vide Journal xx, p. 139.

12. Having given

X101 =2-0043214

\101-5= 2-0064660

\102 =2-0086002

\102-5= 2-0107239

X103 =2-0128372

X104 =2-0170333

and assuming that sixth differences vanish find X103*5.

&quot;Institute of Actuaries Exam.&quot;, vide Journal xxii, p. 65.

b^u,
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13. Having given the values of annuities at the following
rates of interest, namely, at

3 =15-863

34 = 14-941

4 =14-105

4i= 13-343

5 =12-648

Find the value at 4 328 per-cent.

&quot;Institute of Actuaries Exam.&quot;, vide Journal xxii, p. 300.

,

14. The HM
premium at age 40 is at 3 per-cent -025891

34 -024654

4 -023517

44 -022470

5 -021509

6 -019811

Interpolate the corresponding premium at 54 per-cent, (1) using
two of these values, (2) using four, and (3) using six.

&quot;Institute of Actuaries Exam.&quot;, 1881.

15. Show that the sum of the series

1 ,1^1. j.-*
r^n+ ^}

+
(m + r)(m + 2r)

+
(m+ 2r) (m + 3r)

+ &quot;* mfin

is equal to
mr

&quot;

Institute of Actuaries Exam.&quot; vide Journal iii, p 274.

16. Given every nth term of a series of values, i.e., ux , UA

&c., show at length how the intermediate terms, u&

. . . may be obtained by interpolation.

Given that in the series ux ,
ux+l , ux+2 . . .

ux= 9936675-4

8, = +12767-62
S2
= -3013-725

S3 = +422-8247
84
= -34-72847

85
= +1-254221

you are required to construct the series as far as the term

What assumption is necessary ?

&quot;

Institute of Actuaries Exam.&quot;, 1876, vide Journal xx, p. 139.
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17. If M.r be a function of a; of the form b^x -f btf? -f &c. ad

injin., show that it can also be expressed in the form

\7) &quot;T TT \&amp;lt;j
I .1-* (I-*)

2
(I-*)

3

We have

so that the coefficient of A&quot; *! in the term bm+r+1 x&quot;
+r+&amp;gt; is

(m+ r)(m+ i l)...(r+ l) + ,~

where Pr is the (r-f l)th term in the expansion of (lx)~(m+1\

Thus the coefficient of AW
Z&amp;gt;!

in ux is
(

= )

18. Show that

and hence determine a series of such a nature that the terms

after the first shall be respectively double the first terms of the

successive orders of difference, (u2= 2A 1

^i, ^3=2A2wu and so on).

&quot;Institute of Actuaries Exam.&quot;, 1881.

19. Prove by means of Stirling s interpolation formula that,

if third and higher differences are neglected,

IP? x2
x(n x\

tt- + -*-- -Htf-
U-

Journal of the Institute of Actuaries, xv, p. 392.

20. If 1/4=85, M 5
= 156, u 6

= 259, 7=400, 8=585, and

fourth differences are constant, find

(i) The differences of w4 .

(ii) The value of ug .

(ui) The general expression for ux .
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21. Given u = u3
= Q, ii4=H2, 10

= 9,100, u&amp;lt;20= 1 56,400,

and that fourth differences are constant, find by means of

Lagrange s formula the general expression for ux .

Result, ux =x* 9-r5

.

22. Let Uij u2 . . . denote a series of quantities, and Sx denote

the sum of the first x of them, S being =0. Having given the

values of Sw , S2ji . . . Srw ,
show how to find the values of ui} u%,

u3 . . . urn .

Let 8 denote the difference symbol for the increment unity in

the suffix, so that Sux= ux+ i ux) 88^= 8^+1 S=16*+]. Let

A be the difference symbol for the increment n in the suffix, so

that ^ux= ux+n ux) ASa.= Sa.+H 83.. Form by subtraction the

difference table for the series of given quantities S , Sw . . . Sni ,

and let A(= SW), A 2 ... Ar denote the leading differences. By
the method of 1, Chap. IV, we can find SS

,
S2S , S3S . . . S S

in terms of A, A2 .... But &x=ux+l , . . &&x=Bux+l , &c.,

so that we obtain the values of ul} Su 1} &Ui . . . Sr
~

J%, and then

by addition of differences we can form the table u\, u% . . . urn .

As an illustration take that afforded by Mr. Berridge s gradua
tion of the Peerage Mortality Table (vide Journal of the Institute

of Actuaries, vol. xii, pp. 220, 221). Here ?i=10, and the

difference table for the quantities S , Sw , S2W ... is that given
at the top of p. 221 of the Journal. A = S tt

= 99,616,210,

A2= -18,425, A3^ -9,898, A4= -186,096, &c. By the

equations of 1, Chap. IY, we have

&Ul= -001A3-. . .

&c. &c.

The first term, u\ ,
is obtained by Mr. Berridge as follows :

n(n-\] n(-l)( 2).* --^ - -

If fn(n-l) n(n-l)(n-2)^&quot; ^
|
s
*-( 2^ +-

~ir
-

This equation gives Ui when Bu^ $2
Ui . . . are found.
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As another illustration, find ui} u2 ,
w3 . . .

, having given

S5
= 1,365, S10

= 5,155, S 15
= 13,370, Sa,= 28,635, third differences

being assumed constant. It will be found that u
}

= \5
\&amp;gt;, 8^= 49,

&**,=!(), S*u,=l.

23. If ux -=-(x a) (x b) (x c) . . . to n factors, prove that

8wa.= S
] + S;Z+ ... +SW , where, for all values of r from r=I to

r= n 1, S&amp;gt;.
denotes the sum of the different products that can be

formed from the factors x a,xb . . . taken n r together, and

Sw=l. (The increment of x is supposed unity.)

24. If
^~ l) - (*~ n + 1)

is denoted by Ffe n), prove

that, the increment of x being unity,

SrF(#, m + r)=F(A-, m).

25. The increment of x being unity, we have

x(x 1)

and therefore, taking Srux as the function of x,

o

Verify this by differencing the expression

and making use of Example 24.

26. Having given uQ=a, &u_i= b,8
2u_ 2=c,&

3
U-3= d,&

4u_ 4
=

prove that

T 4

fourth differences being constant and the increment of a? unity.

27. The increment of x being unity, prove by induction or

otherwise that

*(g+ !)(*+ 2) ,,-
o

- 0*t--t-
_
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Assume this theorem holds for a particular value of x. Increasing
the suffixes by unity, our hypothesis gives us

E

Now, HI

8w_ 1
= 82i6_ 2 + . . ., &c.

whence the coefficient of Bru_r in the expression for ux +\ is

,

~]?&quot; &quot;IT

and it may easily be proved by induction that this

_ (*+!)(*+ 2) . . . (g+l+r-1)

|r

X- NOTE. The above theorem follows at once by the method of separation of

/ 8 \~
x

symbols. Its symbolical expression is (1 + 5)^0 =( 1
- -

1 o-

* 28. Prove Briggs Interpolation Equations (vide Journal of
the Institute of Actuaries, vol. xiv, p. 79).

Let 8 denote the difference symbol when the increment of x is

unity, A when the increment of x is 5. Also let 1 + 8 be denoted

by E. It may be easily verified that

whence
(f)***= @

t This is a particular case of the theorem

n being an odd number =2m + l. This theorem was communicated to me by
Mr. W. L. Mollisou, of Clare Coll., Camb. It may be obtained by equating the
coefficients of xn in the equation

log (1 -px) + log (1 ~qx)=\og{I-(p + q)x +pqx*} ,

and then putting p = 1 + S, q= 1.
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In this equation, putting n in succession equal to 1, 2, 3 ... 20,

we form the table given (Journal of the Institute of Actuaries,

xiv, p. 79) e.g., putting n 13, we get

whence

Writing {SE
2 + 83E + 2S5

\

n in the form B5n
]
a2+ a + 2

; &quot;,
where

p
a=-^, we see that it may be expanded in a series of terms, in

each of which the index of 8 is greater by 2 and the index of E
less by 1 than in the preceding term, the first term being 8&quot;E

2
&quot;.

Now, let two tables of diiferences be formed, as at p. 12, one

of the 8 differences, the other of the A differences, and imagine

the second superposed on the first, the two tables being so formed

that corresponding values of ux may coincide. Since the interval

between two consecutive terms of the second table is 5 times as

great as between two of the first table, it follows that A*^ will

fall in the 5rcth row of the first table below ux . But Sn~Ernux
= &M

r+2n&amp;gt;
and is therefore in the (4n+ w)th row below ux i.e.,

in the same row in which Anux will fall. And, since in the

expansion of
)
E2+ S3E + 2S5

;

n the powers of 8 increase by 2

and those of E diminish by 1, all the terms of
;
SE2+ S3E + 2S5

;

nux

will lie in the same row.

29. Denoting uxy , a function of two independent variables

x and y, by xy, prove that, if third and higher differences are

neglected,

i 2r_ 1

^=-(00+01+10+11! +
j

;
11 + 10-01 oo;

- 10-00} +
A

{21 + 20+ -Fl + - 10

-(Il + 10+ 01+00)}+ y (y
9 ^J

MO no

io+6T+oo)} + . /IT+do-di-To},
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30. Find ry^ (mantissa of Iog 1()
41 -6}, having given the

following table of values of the function -
{mantissa of Iog 10 x}.

X
II






